Particularidades de la resistencia a la insulina en el síndrome de ovario poliquístico
Texto completo:
PDFResumen
Introducción: La resistencia a la insulina e hiperinsulinemia son frecuentes en las mujeres con síndrome de ovario poliquístico. Una condición que resulta relevante como factor patogénico principal de las alteraciones metabólicas que acompañan al síndrome y porque condiciona fenotipos con mayor riesgo metabólico y reproductivo.
Objetivo: Realizar una revisión bibliográfica sobre la resistencia a la insulina en el síndrome de ovario poliquístico.
Métodos: Se realizó una revisión bibliográfica tipo estado del arte. Se consultaron 229 artículos obtenidos de las bases PubMed, Medline, SciELO y Google Académico.
Conclusiones: La resistencia a la insulina tiene importancia capital en el síndrome de ovario poliquístico, no sólo por su frecuencia, sino también por el amplio espectro de alteraciones metabólicas y reproductivas que se le asocian. Como en otros trastornos que caracterizan al síndrome, los mecanismos fisiopatogénicos específicos no están del todo claros, pero existe la posibilidad de diagnosticarla y tratarla oportunamente, con lo que pueden prevenirse complicaciones, algunas de importancia vital. Por esto, la educación para la salud desde edades tempranas, que propicie estilos de vida saludable, prevención del sobrepeso corporal y control de otros factores que agravan la resistencia a la insulina, así como la evaluación temprana de la resistencia a la insulina, deben entenderse como cruciales en el manejo de las mujeres con síndrome de ovario poliquístico, con independencia de su peso corporal.
Palabras clave: síndrome de ovario poliquístico; resistencia a la insulina; hiperinsulinismo; fisiopatología.
Referencias
Diamanti E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981-1030. DOI: https://doi.org/10.1210/er.2011-1034
Kiconco S, Tay CT, Rassie KL, Azziz R, Teede HJ, Joham AE. Natural history of polycystic ovary syndrome: A systematic review of cardiometabolic outcomes from longitudinal cohort studies. Clin Endocrinol (Oxf). 2021. DOI: https://doi.org/10.1111/cen.14647
Osibogun O, Ogunmoroti O, Michos E. Polycystic ovary syndrome and cardiometabolic risk: Opportunities for cardiovascular disease prevention. Trends Cardiovasc Med. 2020;30(7):399-404. DOI: https://doi.org/10.1016/j.tcm.2019.08.010
Morley L, Tang T, Yasmin E, Norman R, Balen A. Insulin sensitising drugs (metformin, rosiglitazone, pioglitazone, D chiro inositol for women with polycystic ovary syndrome, oligoamenorrhoea and subfertility. Cochrane Systematic Review. 2017 [acceso: 01/07/2019]. Disponible en: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003053.pub6
Kite C, Lahart I, Afzal I, Broom D, Randeva H, Kyrou I, et al. Exercise, or exercise and diet for the management of polycystic ovary syndrome: a systematic review and meta-analysis. Systematic Reviews. 2019;8(1):51-79. DOI: https://doi.org/10.1186/s13643-019-0962-3
Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes. 1989;38(9):1165-74. DOI: https://doi.org/10.2337/diab.38.9.1165
Stepto NK, Moreno A, McIlvenna LC, Walters KA, Rodgers RJ. Molecular Mechanisms of Insulin Resistance in Polycystic Ovary Syndrome: Unraveling the Conundrum in Skeletal Muscle? J Clin Endocrinol Metab. 2019;104(11):5372-81. DOI: https://doi.org/10.1210/jc.2019-00167
Zeng X, Xie YJ, Liu YT, Long SL, Mo ZC. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214-21. DOI: https://doi.org/10.1016/j.cca.2019.11.003
Pasquali R. Metabolic Syndrome in Polycystic Ovary Syndrome. Horm Res. 2018;49: 114-30. DOI: https://doi.org/10.1159/000485995
Dumesic D, Phan J, Leung K, Grogan T, Ding X, Li X, et al. Adipose insulin resistance in normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(6):2171-83. DOI: https://doi.org/10.1210/jc.2018-02086
Lewandowski KC, Płusajska J, Horzelski W, Bieniek E, Lewiński A. Limitations of insulin resistance assessment in polycystic ovary syndrome. Endocr Connect. 2018;7(3):403-12. DOI: https://doi.org/10.1530/EC-18-0021
Fenichel P, Rougier C, Hieronimus S, Chevalier N. Which origin for polycystic ovaries syndrome: Genetic, environmental or both? Ann Endocrinol (Paris). 2017;78(3):176-85. DOI: https://doi.org/10.1016/j.ando.2017.04.024
Zaki M, Hassan N, El-Bassyouni HT, Kamal S, Basha W, Azmy O. Association of the Pro12Ala Polymorphism with the Metabolic Parameters in Women with Polycystic Ovary Syndrome. Open Access Maced JMedSci. 2017;5(3):275-80. DOI: https://doi.org/10.3889/oamjms.2017.088
Ruan Y, Ma J, Xie X. Association of IRS-1 and IRS-2 genes polymorphisms with polycystic ovary syndrome: a meta-analysis. Endocr J. 2012;59(7):601-9. DOI: https://doi.org/10.1507/endocrj.ej11-0387
Yilmaz M, Yurtçu E, Demirci H, Ergün MA, Ersoy R, Karakoç A, et al. Calpain 10 gene single-nucleotide 44 polymorphism may have an influence on clinical and metabolic features in patients with polycystic ovary syndrome. J Endocrinol Invest. 2009;32(1):13-7. DOI: https://doi.org/10.1007/BF03345671
Dunaif A: Perspectives in polycystic ovary syndrome: from hair to eternity. J Clin Endocrinol Metab. 2016;101(3):759-68. DOI: https://doi.org/10.1210/jc.2015-3780
Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43(1):55-9. DOI: https://doi.org/10.1038/ng.732
Simonis-Bik AM, Nijpels G, van Haeften TW, Houwing-Duistermaat JJ, Boomsma DI, Reiling E, et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes. 2010;59(1):293-301. DOI: https://doi.org/10.2337/db09-1048
Goodarzi M, Jones M, Li X, Chua A, García O, Chen Y, et al. Replication of Association of DENND1A and THADA Variants with Polycystic Ovary Syndrome in European Cohort. J Med Genet. 2012;49(2):90-5. DOI: https://doi.org/10.1136/jmedgenet-2011-100427
Alizzi Fadia J, Talab Kokaz H, Sharhan Al-Mayah Q. DENND1A and THADA Gene Polymorphism Among Iraqi Women With Polycystic Ovary Syndrome. Inter J of Women’s Health and Reprod Sci. 2020 [acceso: 01/07/2019];8:265-71. Disponible en: https://www.sid.ir/en/journal/ViewPaper.aspx?id=775965
Bao S, Cai JH, Yang SY, Ren Y, Feng T, Jin T, et al. Association of DENND1A Gene Polymorphisms with Polycystic Ovary Syndrome: A Meta-Analysis. J Clin Res Pediatr Endocrinol. 2016;8(2):135-43. DOI: https://doi.org/10.4274/jcrpe.2259
Zhu YN, Zhang YT, Liu Q, Shen SM, Zou X, Cao YX, et al. Association analysis between the tag single nucleotide polymorphisms of DENND1A and the risk of polycystic ovary syndrome in Chinese Han women. BMC Med Genet. 2020;21(1):14. DOI: https://doi.org/0.1186/s12881-019-0945-1
Gao L, Zhang Y, Cui Y, Jiang Y, Wang X, Liu J. Association of the T45G and G276T polymorphisms in the adiponectin gene with PCOS: A meta-analysis. Gynecol Endocrinol. 2012;28(2):106-10. DOI: https://doi.org/10.3109/09513590.2010.508543
Tessneer KL, Jackson RM, Griesel BA, Olson AL. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a potential mechanism for development of insulin resistance. Endocrinology. 2014;155(9):3315-28. DOI: https://doi.org/10.1210/en.2013-2148
Yu J, Ding C, Guan S, Wang C. Association of single nucleotide polymorphisms in the RAB5B gene 3'UTR region with polycystic ovary syndrome in Chinese Han women. Biosci Rep. 2019;39(5):BSR20190292. DOI: https://doi.org/10.1042/BSR20190292
Franks S, Gharani N, Waterworth D, Batty S, White D, Williamson R, et al. The genetic basis of polycystic ovary syndrome. Hum Reprod. 1997;12(12):2641-8. DOI: https://doi.org/10.1093/humrep/12.12.2641
Gaasenbeek M, Powell BL, Sovio U, Haddad L, Gharani N, Bennett A, et al. Large-scale analysis of the relationship between CYP11A promoter variation, polycystic ovarian syndrome, and serum testosterone. J Clin Endocrinol Metab. 2004;89(5):2408-13. DOI: https://doi.org/10.1210/jc.2003-031640
Peng HM, Im SC, Pearl NM, Turcu AF, Rege J, Waskell L, et al. Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production. Biochemistry. 2016;55(31):4356-65. DOI: https://doi.org/10.1021/acs.biochem.6b00532
Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, et al. Large-Scale Genome-Wide Meta Analysis of Polycystic Ovary Syndrome Suggests Shared Genetic Architecture for Different Diagnosis Criteria. PLoS Genet. 2018;14(12):e1007813. DOI: https://doi.org/10.1371/journal.pgen.1007813
Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci (USA). 1999;96(15):8573-8. DOI: https://doi.org/10.1073/pnas.96.15.8573
Mukherjee A, Sidis Y, Mahan A, Raher MJ, Xia Y, Rosen ED, et al. FSTL3 deletion reveals roles for TGF-beta family ligands in glucose and fat homeostasis in adults. Proc Natl Acad Sci (USA). 2007;104(4):1348-53. DOI: https://doi.org/10.1073/pnas.0607966104
He J, Liu Q, Yu S, Lei M, Liu J, Di R, et al. Expression and functional analysis of the Follistatin-like 3 (FSTL3) gene in the sheep ovary during the oestrous cycle. Reprod Domest Anim. 2021;56(3):427-36. DOI: https://doi.org/10.1111/rda.13879
Baczek J, Silkiewicz M, Wojszel ZB. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients. 2020;12(8):2401. DOI: https://doi.org/10.3390/nu12082401
Jordan CD, Bohling SD, Charbonneau NL, Sakai LY. Fibrillins in adult human ovary and polycystic ovary syndrome: is fibrillin-3 affected in PCOS? J Histochem Cytochem. 2010;58(10):903-15. DOI: https://doi.org/10.1369/jhc.2010.956615
Sánchez M, Tena M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 2020;35:100937. DOI: https://doi.org/10.1016/j.molmet.2020.01.001
Polak AM, Adamska A, Krentowska A, Łebkowska A, Hryniewicka J, Adamski M, et al. Body Composition, Serum Concentrations of Androgens and Insulin Resistance in Different Polycystic Ovary Syndrome Phenotypes. J Clin Med. 2020;9(3):732. DOI: https://doi.org/10.3390/jcm9030732
Baldani D, Skrgatic L, Kasum M, Zlopasa G, Oguic S, Herman M. Altered leptin, adiponectin, resistin and ghrelin secretion may represent an intrinsic polycystic ovary syndrome abnormality. Gynecol Endocrinol. 2019;35:401-5. DOI: https://doi.org/10.1080/09513590.2018.1534096
Tandon P, Wafer R, Minchin J. Adipose morphology and metabolic disease. J Exp Biol. 2018;221(Pt Suppl 1):jeb164970. DOI: https://doi.org/10.1242/jeb.164970
Barber T, Hanson P, Weickert M, Franks S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin Med Insights Reprod Health. 2019;13:1179558119874042. DOI: https://doi.org/10.1177/1179558119874042
Sadrzadeh S, Hui E, Schoonmade L, Painter R, Lambalk C. Birthweight and PCOS: systematic review and meta-analysis. Hum Reprod Open. 2017;2017(2):hox010. DOI: https://doi.org/10.1093/hropen/hox010
Kshetrimayum C, Sharma A, Mishra V, Kumar S. Polycystic ovarian syndrome: Environmental/occupational, lifestyle factors; an overview. J Turk Ger Gynecol Assoc. 2019;20(4):255-63. DOI: https://doi.org/10.4274/jtgga.galenos.2019.2018.0142
Lumme J, Sebert S, Pesonen P, Piltonen T, Järvelin MR, Herzig KH, et al. Vitamin D Levels in Women with Polycystic Ovary Syndrome: A Population-Based Study. Nutrients. 2019;11(11):2831. DOI: https://doi.org/10.3390/nu11112831
Dunaif A, Sorbara L, Delson R, Green G. Ethnicity and polycystic ovary syndrome are associated with independent and additive decreases in insulin action in Caribbean-Hispanic women. Diabetes. 1993;42(10):1462-8. DOI: https://doi.org/10.2337/diab.42.10.1462
Carmina E, Legro RS, Stamets K, Lowell J, Lobo RA. Difference in body weight between American and Italian women with polycystic ovary syndrome: influence of the diet. Hum Reprod. 2003;18(11):2289-93. DOI: https://doi.org/10.1093/humrep/deg440
He F, Li Y. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res. 2020;13(1):73. DOI: https://doi.org/10.1186/s13048-020-00670-3
Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995;96(2):801-10. DOI: https://doi.org/10.1172/JCI118126
Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19(1):31-44. DOI: https://doi.org/10.1038/nrm.2017.89
Vella V, Malaguarnera R, Nicolosi ML, Morrione A, Belfiore A. Insulin/IGF signaling and discoidin domain receptors: An emerging functional connection. Biochim Biophys Acta Mol Cell Res. 2019;1866(11):118522. DOI: https://doi.org/10.1016/j.bbamcr.2019.118522
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. DOI: https://doi.org/10.1152/physrev.00063.2017
Uchikawa E, Choi E, Shang G, Yu H, Bai XC. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. Elife. 2019;8:e48630. DOI: https://doi.org/10.7554/eLife.48630
Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes. 2006;55(8):2392-7. DOI: https://doi.org/10.2337/db06-0391
Chang W, Goodarzi M, Williams H, Magoffin D, Pall M, Azziz R. Adipocytes from women with polycystic ovary syndrome demonstrate altered phosphorylation and activity of glycogen synthase kinase 3. Fertil Steril. 2008;90:2291-7. DOI: https://doi.org/10.1016/j.fertnstert.2007.10.025
Cadagan D, Khan R, Amer S. The cal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome. Reprod Biol. 2016;16:53-60. DOI: https://doi.org/10.1016/j.repbio.2015.12.006
Corbould A, Kim YB, Youngren JF, Pender C, Kahn BB, Lee A, et al. Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling. Am J Physiol Endocrinol Metab. 2005;288(5):E1047-54. DOI: https://doi.org/10.1152/ajpendo.00361.2004
Eriksen M, Pørneki AD, Skov V, Burns JS, Beck-Nielsen H, Glintborg D, et al. Insulin resistance is not conserved in myotubes established from women with PCOS. PLoS One. 2010;5(12):e14469. DOI: https://doi.org/10.1371/journal.pone.0014469
Corbould A, Zhao H, Mirzoeva S, Aird F, Dunaif A. Enhanced mitogenic signaling in skeletal muscle of women with polycystic ovary syndrome. Diabetes. 2006;55(3):751-9. DOI: https://doi.org/10.2337/diabetes.55.03.06.db05-0453
Seow KM, Juan CC, Hsu YP, Hwang JL, Huang LW, Ho LT. Amelioration of insulin resistance in women with PCOS via reduced insulin receptor substrate-1 Ser312 phosphorylation following laparoscopic ovarian electrocautery. Hum Reprod. 2007;22(4):1003-10. DOI: https://doi.org/10.1093/humrep/del466
Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab. 2001;281(2):E392-9. DOI: https://doi.org/10.1152/ajpendo.2001.281.2.E392
Shukla P, Mukherjee S. Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion. 2020;52:24-39. DOI: https://doi.org/10.1016/j.mito.2020.02.006
Song D, Hong Y, Sung Y, Lee H. Insulin resistance according to β-cell function in women with polycystic ovary syndrome and normal glucose tolerance. PLoS ONE. 2017;12:e0178120. DOI: https://doi.org/10.1371/journal.pone.0178120
Wang T, Zhao Z, Xu Y, Qi L, Xu M, Lu J, et al. Insulin Resistance and β-Cell Dysfunction in Relation to Cardiometabolic Risk Patterns. J Clin Endocrinol Metab. 2018;103(6):2207-15. DOI: https://doi.org/10.1210/jc.2017-02584
Gholinezhad M, Gholsorkhtabaramiri M, Esmaeilzadeh S, Ghanbarpour A. Insulin resistance and adverse metabolic profile in overweight/obese and normal weight of young women with polycystic ovary syndrome. Caspian J Intern Med. 2018;9(3):260-7. DOI: https://doi.org/10.22088/cjim.9.3.260
Pande AR, Guleria AK, Singh SD, Shukla M, Dabadghao P. β cell function and insulin resistance in lean cases with polycystic ovary syndrome. Gynecol Endocrinol. 2017;33(11):877-81. DOI: https://doi.org/10.1080/09513590.2017.1342165
Amato MC, Vesco R, Vigneri E, Ciresi A, Giordano C. Hyperinsulinism and polycystic ovary syndrome (PCOS): role of insulin clearance. J Endocrinol Invest. 2015;38(12):1319-26. DOI: https://doi.org/10.1007/s40618-015-0372-x
Monteagudo G, González R, Gómez M, Ovies G, Menocal A, Rodríguez K, et al. Resistencia a la insulina en mujeres con Síndrome de Ovario Poliquístico. Rev Cubana Endocrinol. 2019 [acceso: 10/07/2021];21(2):e179. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532019000200004&lng=es&nrm=iso&tlng=es
Zhang B, Wang J, Shen S, Liu J, Sun J, Gu T, et al. Association of Androgen Excess with Glucose Intolerance in Women with Polycystic Ovary Syndrome. Biomed Res Int. 2018;2018:6869705. DOI: https://doi.org/10.1155/2018/6869705
Dumesic DA, Akopians AL, Madrigal VK, Ramirez E, Margolis DJ, Sarma MK, et al. Hyperandrogenism Accompanies Increased Intra-Abdominal Fat Storage in Normal Weight Polycystic Ovary Syndrome Women. J Clin Endocrinol Metab. 2016;101(11):4178-88. DOI: https://doi.org/10.1210/jc.2016-2586
Barazzoni R, Gortan Cappellari G, Ragni M, Nisoli E. Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord. 2018;23(2):149-57. DOI: https://doi.org/10.1007/s40519-018-0481-6
Barber TM, Franks S. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf). 2021;95(4):531-41. DOI: https://doi.org/10.1111/cen.14421
Jeanes YM, Reeves S. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges. Nutr Res Rev. 2017;30(1):97-105. DOI: https://doi.org/10.1017/S0954422416000287
Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Task Force on the Phenotype of the Polycystic Ovary Syndrome of The Androgen Excess and PCOS Society. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456-88. DOI: https://doi.org/10.1016/j.fertnstert.2008.06.035
Zeng X, Xie Y, Liu Y, Long S, Mo Z. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214-21. DOI: https://doi.org/10.1016/j.cca.2019.11.003
Lin K, Sun X, Wang X, Wang H, Chen X. Circulating Adipokine Levels in Nonobese Women with Polycystic Ovary Syndrome and in Nonobese Control Women: A Systematic Review and Meta-Analysis. Front Endocrinol. 2021;11:537809. DOI: https://doi.org/10.3389/fendo.2020.537809
Cardoso NS, Ribeiro VB, Dutra SG, Ferriani RA, Gastaldi AC, Araújo JE, et al. Polycystic ovary syndrome associated with increased adiposity interferes with serum levels of TNF-alpha and IL-6 differently from leptin and adiponectin. Arch Endocrinol Metab. 2020;64(1):4-10. DOI: https://doi.org/10.20945/2359-3997000000197
Bannigida DM, Nayak SB, Vijayaragavan R. Serum visfatin and adiponectin - markers in women with polycystic ovarian syndrome. Arch Physiol Biochem. 2020;126(4):283-6. DOI: https://doi.org/10.1080/13813455.2018.1518987
Altinkaya S, Nergiz S, Küçük M, Yüksel H. Apelin levels in relation with hormonal and metabolic profile in patients with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2014;176:168-72. DOI: https://doi.org/10.1016/j.ejogrb.2014.02.022
Chang C, Huang S, Hsu Y, Chin T, Soong Y. The serum level of irisin, but not asprosin, is abnormal in polycystic ovary syndrome patients. Sci Rep. 2019;9:6447. DOI: https://doi.org/10.1038/s41598-019-42061-9
Wang C, Zhang XY, Sun Y, Hou XG, Chen L. Higher circulating irisin levels in patients with polycystic ovary syndrome: a meta-analysis. Gynecol Endocrinol. 2018;34(4):290-3. DOI: https://doi.org/10.1080/09513590.2017.1393065
Diamanti-Kandarakis E, Panidis D. Unravelling the phenotypic map of polycystic ovary syndrome (PCOS): a prospective study of 634 women with PCOS. Clin Endocrinol (Oxf). 2007;67(5):735-42. DOI: https://doi.org/10.1111/j.1365-2265.2007.02954.x
Dahan M, Abbasi F, Reaven G. Relationship between surrogate estimates and direct measurement of insulin resistance in women with polycystic ovary syndrome. J Endocrinol Invest. 2019;42:987-93. DOI: https://doi.org/10.1007/s40618-019-01014-9
Tosi F, Bonora E, Moghetti P. Insulin resistance in a large cohort of women with polycystic ovary syndrome: a comparison between euglycaemic-hyperinsulinaemic clamp and surrogate indexes. Hum Reprod. 2017;32(12):2515-21. DOI: https://doi.org/10.1093/humrep/dex308
Kurl S, Zaccardi F, Onaemo VN, Jae SY, Kauhanen J, Ronkainen K, et al. Association between HOMA-IR, fasting insulin and fasting glucose with coronary heart disease mortality in nondiabetic men: a 20-year observational study. Acta Diabetol. 2015;52(1):183-6. DOI: https://doi.org/10.1007/s00592-014-0615-x
Echiburú B, Crisosto N, Maliqueo M, Pérez-Bravo F, de Guevara AL, Hernández P, et al. Metabolic profile in women with polycystic ovary syndrome across adult life. Metabolism. 2016;65(5):776-82. DOI: https://doi.org/10.1016/j.metabol.2016.01.006
Ollila MM, West S, Keinänen-Kiukaanniemi S, Jokelainen J, Auvinen J, Puukka K, et al. Overweight and obese but not normal weight women with PCOS are at increased risk of Type 2 diabetes mellitus-a prospective, population-based cohort study. Hum Reprod. 2017;32(2):423-31. DOI: https://doi.org/10.1093/humrep/dew329
Lazaridou S, Dinas K, Tziomalos K. Prevalence, pathogenesis and management of prediabetes and type 2 diabetes mellitus in patients with polycystic ovary syndrome. Hormones (Athens). 2017;16(4):373-80. DOI: https://doi.org/10.14310/horm.2002.1757
Zhu S, Zhang B, Jiang X, Li Z, Zhao S, Cui L, et al. Metabolic disturbances in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. FertilSteril. 2019 Jan;111(1):168-77. DOI: https://doi.org/10.1016/j.fertnstert.2018.09.013
Kahn CR. The molecular mechanism of insulin action. Annu Rev Med. 1985;36:429-51. DOI: https://doi.org/10.1146/annurev.me.36.020185.002241
Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes. 2010;59(11):2697-707. DOI: https://doi.org/10.2337/db10-1032
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. DOI: https://doi.org/10.1007/BF00280883
Hrebícek J, Janout V, Malincíková J, Horáková D, Cízek L. Detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention. J Clin Endocrinol Metab. 2002;87(1):144-7. DOI: https://doi.org/10.1210/jcem.87.1.8292
Mu L, Li R, Lai Y, Zhao Y, Qiao J. Adipose insulin resistance is associated with cardiovascular risk factors in polycystic ovary syndrome. J Endocrinol Invest. 2019;42(5):541-8. DOI: https://doi.org/10.1007/s40618-018-0949-2
Polak K, Czyzyk A, Simoncini T, Meczekalski B. New markers of insulin resistance in polycystic ovary syndrome. J Endocrinol Invest. 2017;40:1-8. DOI: https://doi.org/10.1007/s40618-016-0523-8
Li L, Zhang J, Zeng J, Liao B, Peng X, Li T, et al. Proteomics analysis of potential serum biomarkers for insulin resistance in patients with polycystic ovary syndrome. Int J Mol Med. 2020;45:1409-16. DOI: https://doi.org/10.3892/ijmm.2020.4522
Federação Brasileira das Associações de Ginecologia e Obstetrícia (FEBRASGO). Síndrome dos ováriospolicísticos. São Paulo: Orientações e Recomendações FEBRASGO; 2018. p. 103 [acceso: 10/07/2021]. Disponible en: https://www.febrasgo.org.br/media/k2/attachments/18Z-ZSndromeZdosZovriosZpolicsticos.pdf
Milewicz A, Kudła M, Spaczyński R, Dębski R, Męczekalski B, Wielgoś M, et al. The polycystic ovary syndrome: a position statement from the Polish Society of Endocrinology, the Polish Society of Gynaecologists and Obstetricians, and the Polish Society of Gynaecological Endocrinology. Endokrynol Pol. 2018;69:328-6. DOI: https://doi.org/10.5603/EP.2018.004
Shahin L, Hyassat D, Batieha A, Khader Y, El-Khateeb M, Ajlouni K. Insulin Sensitivity Indices in Patients with Polycystic Ovary Syndrome with Different Body Mass Index Categories. Curr Diabetes Rev. 2020;16(5):483-9. DOI: https://doi.org/10.2174/1573399815666190823151222
American Association of Clinical Endocrinologists Polycystic Ovary Syndrome Writing Committee. American Association of Clinical Endocrinologists Position Statement on Metabolic and Cardiovascular Consequences of Polycystic Ovary Syndrome. Endocr Pract. 2005;11(2):126-34. DOI: https://doi.org/10.4158/EP.11.2.125
Anagnostis P, Tarlatzis BC, Kauffman RP. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism. 2018;86:33-43. DOI: https://doi.org/10.1016/j.metabol.2017.09.016
Le MT, Nguyen VQ, Truong QV, Le DD, Le VNS, Cao NT. Metabolic Syndrome and Insulin Resistance Syndrome among Infertile Women with Polycystic Ovary Syndrome: A Cross-Sectional Study from Central Vietnam. Endocrinol Metab (Seoul). 2018;33(4):447-58. DOI: https://doi.org/10.3803/EnM.2018.33.4.447
Yao K, Bian C, Zhao X. Association of polycystic ovary syndrome with metabolic syndrome and gestational diabetes: Aggravated complication of pregnancy (Review) Experimental And Therapeutic Medicine 2017;14:1271-6. DOI: https://doi.org/10.3892/etm.2017.4642
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2022 Gilda Monteagudo Peña, Gisel Ovies Carballo, Bertha Rodríguez Pendás, Aimee Álvarez Álvarez, Manuel Gomez Alzugaray, Maité Cabrera Gamez, Kenia Rodríguez Martínez

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.