Disfunción neuroendocrina en el síndrome de ovario poliquístico

Jeddú Cruz Hernández, Gilda Monteagudo Peña, Maite Cabrera Gámez

Texto completo:

PDF

Resumen

Introducción: La disfunción neuroendocrina del síndrome de ovario poliquístico se caracteriza, en esencia, por la elevación de la hormona luteinizante y se considera uno de los elementos fisiopatológicos fundamentales del síndrome. Se ha demostrado que esto se asocia con la resistencia a la insulina y las alteraciones metabólicas, además, de con el hiperandrogenismo y un agravamiento de la disfunción reproductora.

Objetivo: Realizar una revisión bibliográfica acerca de la disfunción neuroendocrina en el síndrome de ovario poliquístico.

Métodos: Se revisaron las bases de datos electrónicas Google Scholar, Pubmed, LILACS, BIREME y SciELO, de donde se extrajo la bibliografía que se utilizó para escribir este artículo.

Conclusiones: Según evidencias actuales, la disfunción neuroendocrina del síndrome de ovario poliquístico se asocia con la anovulación crónica, el hiperandrogenismo, la resistencia a la insulina y las alteraciones metabólicas, por lo que tiene un importante valor pronóstico en este sentido.

Palabras clave: síndrome de ovario poliquístico; disfunción neuroendocrina; hormona luteinizante; anovulación; hiperandrogenismo; resistencia a la insulina.

Referencias

Murdoch AP, Diggle PJ, White MC, Kendall Taylor P, Dunlop W. LH in polycystic ovary syndrome: reproducibility and pulsatile secretion. J Endocrinol. 1989;121:185-91. DOI: https://doi.org/10.1677/joe.0.1210185

Fauser BC, De Jong FH. Gonadotropins in polycystic ovarian syndrome. Ann N Y Acad Sci. 1993;687:150-61. DOI: https://doi.org/10.1111/j.1749-6632.1993.tb43863.x

Cheung AP, Lu JKH, Chang RJ. Pulsatile gonadotrophin secretion in women with polycystic ovary syndrome after gonadotrophin-releasing hormone agonist treatment. Human Reprod. 1997;12(6):1156-64. DOI: https://doi.org/10.1111/j.1749-6632.1993.tb43863.x

Saucedo E, Moraga MR, Romeu A, Carmona IO. Proporción LH-FSH y síndrome de ovario poliquístico: ¿prueba olvidada o no útil? Ginecol Obstet Méx. 2016 [acceso: 23/06/2021];84(2):84-94. Disponible en: https://www.medigraphic.com/pdfs/ginobsmex/gom-2016/gom162e.pdf

Wei L, Jayagopal V, Kilpatrick ES, Holding S, Atkin SL. The LH/FSH ratio has little use diagnosing polycystic ovarian syndrome. Am Clin Biochem. 2006;43:217-9. DOI: https://doi.org/10.1258/000456306776865188

Milsom SR, Sowter MC, Carter MA, Knox BS, Gunn AJ. LH levels in women with polycystic ovarian syndrome: have modern assays made them irrelevant? Br J Obstet Gynaecol. 2003;110:760-4. DOI: https://doi.org/10.1111/j.1471-0528.2003.02528.x

Hendriks ML. LH as a diagnostic criterion for polycystic ovary syndrome in patients with WHO II oligo/amenorrhoea. Reprod BioMed Online. 2008;16(6):765-71. DOI: https://doi.org/10.1016/s1472-6483(10)60140-x

Haider S, Manan N, Khan A, Qureshi MA. Prevalence of elevated luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratio in polycystic ovary syndrome (PCOS) women among local population. J Dow University Health Sci Karachi. 2011 [acceso: 23/06/2021];5(1):17-20. Disponible en: https://journals.indexcopernicus.com/api/file/viewByFileId/1003069.pdf

Kabel AM. Polycystic ovarian syndrome: insights into pathogenesis, diagnosis, prognosis, pharmacological and nonpharmacological treatment. Pharm Bioprocess. 2016 [acceso: 23/06/2021];4(1):7-12. Disponible en: https://www.openaccessjournals.com/articles/polycystic-ovarian-syndrome-insights-into-pathogenesis-diagnosis-prognosis-pharmacological-and-nonpharmacological-treatm.pdf

Barontini M, García Rudaz MC, Veldhuis JD. Mechanisms of hypothalamic-pituitary-gonadal disruption in polycystic ovarian syndrome. Arch Med Res. 2001;32(6):544-52. DOI: https://doi.org/10.1016/s0188-4409(01)00325-3

Taylor AE. Gonadotropin dysfunction in women with polycystic ovary syndrome. Fertil Steril. 2006;86(Suppl 1):S12. DOI: https://doi.org/10.1016/j.fertnstert.2006.05.001

Roland AV, Moenter SM. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front Neuroendocrinol. 2014;35(4):494-511. DOI: https://doi.org/10.1016/j.yfrne.2014.04.002

Hall JE, Taylor AE, Hayes FJ, Crowley WF. Insights into hypothalamic-pituitary dysfunction in polycystic ovary syndrome. J Endocrinol Invest. 1998;21:602-11. DOI: https://doi.org/10.1007/BF03350785

Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord. 2007 [acceso: 23/06/2021];8(2):127-41. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17659447/

Soule SG. Neuroendocrinology of the polycystic ovary syndrome. Clin Endoc Metab. 1996;10(2):205-19. DOI: https://doi.org/10.1007/s11154-007-9046-0

De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endoc. 2016;14:38. DOI: https://doi.org/10.1186/s12958-016-0173-x

Berga SL, Yen SS. Opioidergic regulation of LH pulsatility in women with polycystic ovary syndrome. Clin Endocrinol. 1989;30(2):177-84. DOI: https://doi.org/10.1111/j.1365-2265.1989.tb03739.x

Marshall JC, Eagleson CA. Neuroendocrine aspects of polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1999;28(2):295-324. DOI: https://doi.org/10.1016/s0889-8529(05)70071-2

McCartney CR, Eagleson CA, Marshall JC. Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin Reprod Med. 2002;20(4):317-26. DOI: https://doi.org/10.1055/s-2002-36706

Blank SK, McCartney CR, Marshall JC. The origins and sequelae of abnormal neuroendocrine function in polycystic ovary syndrome. Hum Reprod Update. 2006;12(4):351-61. DOI: https://doi.org/10.1093/humupd/dml017

Schoemaker J. Neuroendocrine control in polycystic ovary-like syndrome. Gynecol Endocrinol. 1991;5(4):277-88. DOI: https://doi.org/10.3109/09513599109028449

Balen AH. Hypersecretion of luteinizing hormone in the polycystic ovary syndrome and a novel hormone “gonadotrophin surge attenuating factor”. J R Soc Med. 1995 [acceso: 23/06/2021];88:339-41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1295241/pdf/jrsocmed00069-0041.pdf

Ibáñez L, Oberfield SE, Witchel SF, Auchus RJ, Chang RJ, Codner E, et al. An international consortium update: Pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm Res Paediatr. 2017;88(6):371-95. DOI: https://doi.org/10.1159/000479371

Ruddenklau A, Campbell RE. Neuroendocrine impairments of polycystic ovary syndrome. Endocrinology. 2019;160(10):2230-42. DOI: https://doi.org/10.1210/en.2019-00428

Feldman S, Oberfield SE, Peña AS. Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endoc Soc. 2019;3(8):1545-73. DOI: https://doi.org/10.1210/js.2019-00078

Burt CM, Beller JP, Abshire MY, Collins JS, McCartney CR, Marshall JC. Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids. 2012;77(4):332-7. DOI: https://doi.org/10.1016/j.steroids.2011.12.007

Abbott DH, Dumesic DA, Franks S. Developmental origin of polycystic ovary syndrome a hypothesis. J Endocrinol. 2002;175:1-5. DOI: https://doi.org/10.1677/joe.0.1740001

Coutinho EA, Kauffman AS. The role of the brain in the pathogenesis and physiology of Polycystic Ovary Syndrome (PCOS). Med Sci (Basel). 2019;7(8):84. DOI: https://doi.org/10.3390/medsci7080084

Liao B, Qiao J, Pnag Y. Central regulation of pcos: Abnormal neuronal-reproductive-metabolic circuits in pcos pathophysiology. Front Endocrinol. 2021;12:667422. DOI: https://doi.org/10.3389/fendo.2021.667422

Ashraf S, Nabi M, Rasool SA, Rashid F, Amin S. Hyperandrogenism in polycystic ovarian syndrome and role of CYP gene variants: a review. Egyptian J Med Hum Genetics. 2019;20:25. DOI: https://doi.org/10.1186/s43042-019-0031-4

Laatikainen T, Tulenheimo A, Andersson B, Kӓrkkӓinen. Obesity, serum steroid levels, and pulsatile gonadotropin secretion in polycystic ovarian disease. Europ J Obstet Gynec Reprod Biol. 1993;15(1):45-53. DOI: https://doi.org/10.1016/0028-2243(83)90296-4

Rojas J, Chávez M, Olivar L, Rojas M, Morillo J, Mejías J, et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. In J Reprod Med. 2014:719050. DOI: https://doi.org/10.1155/2014/719050

Sam S. Obesity and polycystic ovary syndrome. Obes Manag. 2007;3(2):69-73. DOI: https://doi.org/10.1089/obe.2007.0019

Poretsky L, Piper B. Insulin resistance, hypersecretion of LH, and a dual-defect hypothesis for the pathogenesis of polycystic ovary syndrome. Obstet Gynecol. 1994 [acceso; 23/06/2021];84(4):613-21. Disponible en: https://pubmed.ncbi.nlm.nih.gov/8090402/

Fulghesu AM, Cucinelli FC, Pavone V, Murgia F, Guido M, Caruso AC, et al. Change in luteinizing hormone and insulin secretion in polycystic ovarian syndrome. Hum Reprod. 1999;14(3):611-7. DOI: https://doi.org/10.1093/humrep/14.3.611

Banaszewska B, Spaczyński RZ, Pelesz M, Pawelczyk L. Incidence of elevated LH/FSH ratio in polycystic ovary syndrome women with normo and hyperinsulinemia. Ann Akad Med Bialymst. 2003 [acceso: 23/06/2021];48:131-4. Disponible en: http://www.advms.pl/roczniki_2003/volumes/vol48_03/26/26-Banaszewska.pdf

Lawson MA, Jain S, Sun S, Patel K, Malcolm PJ, Chang J. Evidence for insulin suppression of baseline luteinizing hormone in women with polycystic ovarian syndrome and normal women. J Clin Endocrinol Metab. 2008;96(6):2089-96. DOI: https://doi.org/10.1210/jc.2007-2656

Orisaka M, Fukuda S, Hattori K, Yoshida Y. Adverse effect(s) of chronically elevated LH in PCOS. J Mamm Ova Res. 2014;31(1):12-6. DOI: https://doi.org/10.1274/jmor.31.12

Salley KE, Wickham EP, Cheang KI, Essah PA, Karjane NW, Nestler JE. Glucose intolerance in Polycystic Ovary Syndrome. A position statement of the Androgen Excess Society. J Clin Endocrinol Metab. 2007;92(12):4546-56. DOI: https://doi.org/10.1210/jc.2007-1549

Pasquali R, Gambineri A. Glucose intolerance states in women with the polycystic ovary syndrome. J Endocrinol Invest. 2013;36(8):648-53. DOI: https://doi.org/10.1007/BF03346757

Joham AE, Ranasinha S, Zoungas S, Moran L, Teede HJ. Gestational diabetes and type 2 diabetes in reproductive-aged women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2014;99(3):E447-52. DOI: https://doi.org/10.1210/jc.2013-2007

Macut D, Bjekić Macut J, Savić Radojević A. Dyslipidemia and oxidative stress in PCOS. Front Horm Res. 2013;40:51-63. DOI: https://doi.org/10.1159/000341683

Wild RA. Dyslipidemia in PCOS. Steroids. 2012;77(4):295-9. DOI: https://doi.org/10.1016/j.steroids.2011.12.002

Randeva HS, Tan BK, Weickert MO, Lois K, Nestler JE, Sattar N, et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev. 2012;33(5):812-41. DOI: https://doi.org/10.1210/er.2012-1003

Paterakis TS, Diamanti Kandarakis E. Aspects of cardiovascular risk in women with polycystic ovary syndrome. Curr Obes Rep. 2014;3:377-86. DOI: https://doi.org/10.1007/s13679-014-0127-6

Acosta A, Monteagudo G, Menocal A. Patrón hormonal de mujeres con diagnóstico clínico y ecográfico del síndrome de ovarios poliquísticos. Rev Cubana Endocrinol. 2004 [acceso: 23/06/2021];15(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532004000200003

García Y, Monteagudo G, Padrón RS, González R. Evaluación de la sensibilidad a la insulina en el síndrome de ovarios poliquísticos. Rev Cubana Endocrinol. 2009 [acceso: 23/0672021];20(3). Disponible en: http://scielo.sld.cu/pdf/end/v20n3/end06309.pdf

García Y, Monteagudo G, Padrón RS, González R. Evaluación de las alteraciones lipídicas en el síndrome de ovarios poliquísticos y su relación con la resistencia a la insulina. Rev Cubana Endocrinol. 2010 [acceso: 23/06/2021];21(2). Disponible en: http://www.bvs.sld.cu/revistas/end/vol21_2_10/end03210.htm

Vázquez JC, Calero JL, Carías JP, Monteagudo G. Correspondencia clínica, hormonal y ecográfica en el diagnóstico del síndrome de ovarios poliquísticos. Rev Cubana Endocrinol. 2016 [acceso: 23/06/2021];27(1). Disponible en: http://scielo.sld.cu/pdf/end/v27n1/end02116.pdf

Panidis D, Farmakiotis D, Rousso D, Katsikis I, Kourtis A, Diamanti Kandarakis E. Serum luteinizing hormone and significantly correlated with androstenedione levels in lean women with polycystic ovary syndrome. Fertil Steril. 2005;84(2):538-40. DOI: https://doi.org/10.1016/j.fertnstert.2005.02.017

Ambiger S, Patil SB, Rekha M, Dhananjaya S. Role of luteinizing hormone LH and insulin resistance in polycystic ovarian syndrome. Int J Reprod Contracept Obstet Gynecol. 2017;6(9):3892-6. DOI: https://doi.org/10.18203/2320-1770.ijrcog20174029

Chan Hong P, Sungwook C. Association between serum gonadotropin level and insulin resistance-related parameters in Korean women with polycystic ovary syndrome. Obstet Gynecol Sci. 2016;59(6):498-505. DOI: https://doi.org/10.5468/ogs.2016.59.6.498

Mohlig M, Spranger J, Ristow M, Pfeiffer AF, Schill T, Scholosser HW, et al. Predictors of abnormal glucose metabolism in women with polycystic ovary syndrome. Eur J Endocrinol. 2006;154:295-301. DOI: https://doi.org/10.1080/09513590802585597

Legro RS, Gnatuk CL, kunselman AR, Dunaif A. Changes in glucose tolerance over time in women with polycystic ovary syndrome: A controlled study. J Clin Endocrinol Metab. 2005;90(6):3236-42. DOI: https://doi.org/10.1210/jc.2004-1843

Casanova NC. Hormona luteinizante, obesidad y alteraciones bioquímicas y hormonales en el síndrome de ovario poliquístico [Tesis de grado]. La Habana: Universidad de Ciencias Médicas de La Habana; 2018.

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2022 Jeddú Cruz Hernández, Maite Cabrera Gámez, Gilda Monteagudo Peña

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.