Mitos y realidades sobre la obesidad en el síndrome de ovario poliquístico
Texto completo:
PDFResumen
Introducción: La asociación entre la obesidad y el síndrome de ovario poliquístico es importante porque amplifica los trastornos metabólicos, reproductivos, psicológicos o de la calidad de vida. Sin embargo, es común que se sobrevalore o se emplee como criterio diagnóstico, lo que denota una definición no clara de esta relación.
Objetivo: Analizar lo que, en opinión de los autores, pudieran ser “mitos” sobre la obesidad en el síndrome de ovario poliquístico y su coherencia con la evidencia disponible.
Métodos: Se realizó una revisión del estado del arte en este tema. Se localizaron 230 artículos en las bases PubMed, Medline, Scielo y Google Académico, y se contrastó con los criterios propios.
Conclusiones: Algunas creencias generalizadas sobre la obesidad en el síndrome de ovario poliquístico, aunque tienen cierto grado de certidumbre, se malinterpretan o magnifican, por lo que pueden considerarse “mitos”. Entender que las mujeres con síndrome de ovario poliquístico pueden no tener obesidad y, aún así, tener adiposidad abdominal y los efectos que de ella derivan, no niega la evidencia indiscutible de que la obesidad, si está presente, agrava el síndrome. Polemizar sobre el tema pretende contribuir a que se diagnostique el síndrome no solo en mujeres con obesidad y que se considere factor de riesgo para la obesidad. Debe entenderse que la obesidad asociada al síndrome puede revertirse y que se pueden incorporar estilos de vida saludable y un control del peso corporal como pilares del tratamiento en todas las mujeres que padezcan este.
Palabras clave: síndrome de ovario poliquístico; obesidad; adiposidad central; riesgo metabólico; riesgo reproductivo.
Referencias
Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618-37. DOI: https://doi.org/10.1093/humupd/dms030
Jena D, Choudhury AK, Mangaraj S, Singh M, Mohanty BK, Baliarsinha AK. Study of Visceral and Subcutaneous Abdominal Fat Thickness and Its Correlation with Cardiometabolic Risk Factors and Hormonal Parameters in Polycystic Ovary Syndrome. Indian J Endocrinol Metab. 2018;22(3):321-7. DOI: https://doi.org/10.4103/ijem.IJEM_646_17
Lim SS, Norman RJ, Davies MJ, Moran LJ. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev. 2013;14(2):95-109. DOI: https://doi.org/10.1111/j.1467-789X.2012.01053.x
Sidra S, Tariq MH, Farrukh MJ, Mohsin M. Evaluation of clinical manifestations, health risks, and quality of life among women with polycystic ovary syndrome. PLoS One. 2019;14(10):e0223329. DOI: https://doi.org/10.1371/journal.pone.0223329
Cesta CE, Mansson M, Palm C, Lichtenstein P, Iliadou AN, Landén M. Polycystic ovary syndrome and psychiatric disorders: Co-morbidity and heritability in a nationwide Swedish cohort. Psychoneuroendocrinology. 2016;73:196-203. DOI: https://doi.org/10.1016/j.psyneuen.2016.08.005
Pasquali R. Metabolic Syndrome in Polycystic Ovary Syndrome. Front Horm Res. 2018;49:114-30. DOI: https://doi.org/10.1159/000485995
Pasquali R, Diamanti-Kandarakis E, Gambineri A: Management of endocrine disease: secondary polycystic ovary syndrome: theoretical and practical aspects. Eur J Endocrinol. 2016;175(4):R157-69. DOI: https://doi.org/10.1530/EJE-16-0374
Stein I, Leventhal M. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935 [acceso: 27/12/2021];29:181-91. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0002937815306426
Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism. 2019;92:108-20. DOI: https://doi.org/10.1016/j.metabol.2018.11.002
Dumesic DA, Hoyos LR, Chazenbalk GD, Naik R, Padmanabhan V, Abbott DH. Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction. 2020;159(1):R1-R13. DOI: https://doi.org/10.1530/REP-19-0197
Day F, Karaderi T, Jones M, Meun C, He C, Drong A, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018;14(12):e1007813. DOI: https://doi.org/10.1371/journal.pgen.1007813
Douma Z, Lautier C, Haydar S, Mahjoub T, Grigorescu F. Portability of GWAS results between ethnic populations: genetic markers for polycystic ovary syndrome (PCOS) in mediterranean area. Acta Endocrinol (Buchar). 2019;15(3):364-71. DOI: https://doi.org/10.4183/aeb.2019.364
Goodarzi MO, Malecki MT, Strauss JF. Meta-analysis of association of FTO genetic variation with PCOS must account for obesity. Genomics. 2020;112(3):2164-5. DOI: https://doi.org/10.1016/j.ygeno.2019.12.010
Batarfi A, Filimban N, Bajouh O, Chaudhary A, Bakhashab S. MC4R variants rs12970134 and rs17782313 are associated with obese polycystic ovary syndrome patients in the Western region of Saudi Arabia. BMC Med Genet. 2019;20:144. DOI: https://doi.org/10.1186/s12881-019-0876
Li T, Wu K, You L, Xing X, Wang P, Cui L, et al. Common variant rs9939609 in gene FTO confers risk to polycystic ovary syndrome. PLoS One. 2013;8(7):e66250. DOI: https://doi.org/10.1371/journal.pone.0066250
Liu AL, Xie HJ, Xie HY, Liu J, Yin J, Hu JS, et al. Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: a systematic review and meta-analysis. BMC Med Genet. 2017;18(1):89. DOI: https://doi.org/10.1186/s12881-017-0452-1
Ramos RB, Spritzer PM. FTO gene variants are not associated with polycystic ovary syndrome in women from Southern Brazil. Gene. 2015;560(1):25-9. DOI: https://doi.org/10.1016/j.gene.2015.01.012
Branavan U, Wijesundera S, Chandrasekaran V, Arambepola C, Wijeyaratne C. In depth analysis of the association of FTO SNP (rs9939609) with the expression of classical phenotype of PCOS: A Sri Lankan study. BMC Med Genet. 2020;21(1):30. DOI: https://doi.org/10.1186/s12881-020-0961-1
Barber TM, Bennett AJ, Groves CJ, Sovio U, Ruokonen A, Martikainen H, et al. Association of variants in the fat mass and obesity associated (FTO) gene with polycystic ovary syndrome. Diabetologia. 2008;51(7):1153-8. DOI: https://doi.org/10.1007/s00125-008-1028-6
Liu Y, Chen Y. Fat Mass and Obesity Associated Gene Polymorphism and the Risk of Polycystic Ovary Syndrome: A Meta-analysis. Iran J Public Health. 2017 [acceso: 27/12/2021];46(1):4-11. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401934/
Chazenbalk G, Chen Y, Heneidi S, Lee J, Pall M, Chen Y, et al. Abnormal expression of genes involved in inflammation, lipid metabolism, and Wnt signaling in the adipose tissue of polycystic ovary syndrome. J Clin Endocrinol Metab. 2012;97:E765-70. DOI: https://doi.org/10.1210/jc.2011-2377
Nambiar V, Vijesh V, Lakshmanan P, Sukumaran S, Suganthi R. Association of adiponectin and resistin gene polymorphisms in South Indian women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2016;200:82-8. DOI: https://doi.org/10.1016/j.ejogrb.2016.02.031
Concha CF, Sir PT, Recabarren SE, Pérez BF. Epigenética del síndrome de ovario poliquístico. Rev Med Chil. 2017;145(7):907-15. DOI: https://doi.org/10.4067/s0034-98872017000700907
Mumm H, Kamper-Jørgensen M, Nybo Andersen AM, Glintborg D, Andersen M. Birth weight and polycystic ovary syndrome in adult life: a register-based study on 523,757 Danish women born 1973-1991. Fertil Steril. 2013;99(3):777-82. DOI: https://doi.org/10.1016/j.fertnstert.2012.11.004
Kempegowda P, Melson E, Manolopoulos K, Arlt W, O'Reilly M. Implicating androgen excess in propagating metabolic disease in polycystic ovary syndrome. Ther Adv Endocrinol Metab. 2020;11:2042018820934319. DOI: https://doi.org/10.1177/2042018820934319
Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui HP, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med. 2019;25(12):1894-1904. DOI: https://doi.org/10.1038/s41591-019-0666-1
Boyle JA, Cunningham J, Norman RJ, Dunbar T, O'Dea K. Polycystic ovary syndrome and metabolic syndrome in Indigenous Australian women. Intern Med J. 2015;45(12):1247-54. DOI: https://doi.org/10.1111/imj.12910
Hu X, Wang J, Dong W, Fang Q, Hu L, Liu C. A meta-analysis of polycystic ovary syndrome in women taking valproate for epilepsy. Epilepsy Res. 2011;97(1-2):73-82. DOI: https://doi.org/10.1016/j.eplepsyres.2011.07.006
Carbone L, Davis B, Fei S, White A, Nevonen K, Takahashi D, et al. Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates. Sci Rep. 2019;9:19232. DOI: https://doi.org/10.1038/s41598-019-55291-8
Volk K, Pogrebna V, Roberts J, Zachry J, Blythe S, Toporikova N. High-Fat, High-Sugar Diet Disrupts the Preovulatory Hormone Surge and Induces Cystic Ovaries in Cycling Female Rats. J Endocr Soc. 2017;1:1488-505. DOI: https://doi.org/10.1210/js.2017-00305
Saad M, Santos A, Prada P. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiol. 2016;31:283-93. DOI: https://doi.org/10.1152/physiol.00041.2015
Baldani D, Skrgatic L, Kasum M, Zlopasa G, Oguic S, Herman M. Altered leptin, adiponectin, resistin and ghrelin secretion may represent an intrinsic polycystic ovary syndrome abnormality. Gynecol Endocrinol. 2019;35:401-5. DOI: https://doi.org/10.1080/09513590.2018.1534096
Elboghdady A, Abd A, Mohamed E, Saeed A. Copeptin and Obesta tin Levels in Polycystic Ovary Women and their Relation to Obesity, Insulin Metabolism and Cardiovascular Diseases. AIMJ. 2020;1(4):44-9. DOI: https://doi.org/10.21608/aimj.2020.27820.1197
O'Reilly MW, Kempegowda P, Walsh M, Taylor AE, Manolopoulos KN, Allwood JW, et al. AKR1C3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women with Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2017;102(9):3327-39. DOI: https://doi.org/10.1210/jc.2017-00947
Anik Ilhan G, Yildizhan B, Pekin T. The impact of lipid accumulation product (LAP) and visceral adiposity index (VAI) on clinical, hormonal and metabolic parameters in lean women with polycystic ovary syndrome. Gynecol Endocrinol. 2019;35(3):233-6. DOI: https://doi.org/10.1080/09513590.2018.1519794
Kempegowda P, Melson E, Manolopoulos K, Arlt W, O'Reilly M. Implicating androgen excess in propagating metabolic disease in polycystic ovary syndrome. Ther Adv Endocrinol Metab. 2020;11:2042018820934319. DOI: https://doi.org/10.1177/2042018820934319
Schiffer L, Arlt W, O'Reilly M. Understanding the Role of Androgen Action in Female Adipose Tissue. Front Horm Res. 2019;53:33-49. DOI: https://doi.org/10.1159/000494901
Zeng X, Xie Y, Liu Y, Long S, Mo Z. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214-21. DOI: https://doi.org/10.1016/j.cca.2019.11.003
Dimitriadis G, Kyrou I, Randeva H. Polycystic Ovary Syndrome as a Proinflammatory State: The Role of Adipokines. Curr Pharm Des. 2016;22:5535-46. DOI: https://doi.org/10.2174/1381612822666160726103133
Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22:709-24. DOI: https://doi.org/10.1093/humupd/dmw027
Baldani DP, Skrgatic L, Kasum M, Zlopasa G, Kralik Oguic S, Herman M. Altered leptin, adiponectin, resistin and ghrelin secretion may represent an intrinsic polycystic ovary syndrome abnormality. Gynecol Endocrinol. 2019;35(5):401-5. DOI: https://doi.org/10.1080/09513590.2018.1534096
Glintborg D, Andersen M, Hagen C, Frystyk J, Hulstrøm V, Flyvbjerg A, et al. Evaluation of metabolic risk markers in polycystic ovary syndrome (PCOS). Adiponectin, ghrelin, leptin and body composition in hirsute PCOS patients and controls. Eur J Endocrinol. 2006;155(2):337-45. DOI: https://doi.org/10.1530/eje.1.02207
Barber T, Hanson P, Weickert M, Franks S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin Med Insights Reprod Health.2019;13:1179558119874042. DOI: https://doi.org/10.1177/1179558119874042
Idicula S, Gawde U, Bhaye S, Pokar K, Bader G. Meta-analysis of gene expression profiles of lean and obese PCOS to identify differentially regulated pathways and risk of comorbidities. Comput Struct Biotechnol J. 2020;18:1735-45. DOI: https://doi.org/10.1016/j.csbj.2020.06.023
Hansen S, Svendsen P, Jeppesen J, Hoeg L, Andersen N, Kristensen J, et al. Molecular mechanisms in skeletal muscle underlying insulin resistance in women who are lean with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104:1841-54. DOI: https://doi.org/10.1210/jc.2018-01771
Tran L, Langlais PR, Hoffman N, Roust L, Katsanos CS. Mitochondrial ATP synthase β-subunit production rate and ATP synthase specific activity are reduced in skeletal muscle of humans with obesity. Exp Physiol. 2019;104(1):126-35. DOI: https://doi.org/10.1113/EP087278
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal. 2012;16(11):1323-67. DOI: https://doi.org/10.1089/ars.2011.4123
Lin K, Sun X, Wang X, Wang H, Chen X. Circulating Adipokine Levels in Nonobese Women With Polycystic Ovary Syndrome and in Nonobese Control Women: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2021;11:537809. DOI: https://doi.org/10.3389/fendo.2020.537809
Liou TH, Yang JH, Hsieh CH, Lee CY, Hsu CS, Hsu MI. Clinical and biochemical presentations of polycystic ovary syndrome among obese and nonobese women. Fertil Steril. 2009;92(6):1960-5. DOI: https://doi.org/10.1016/j.fertnstert.2008.09.003
Manneras L, Leonhardt H, Kullberg J, Jennische E, Odén A, Holm G, et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab. 2011;96:304-11. DOI: https://doi.org/10.1210/jc.2010-1290
Fisch SC, Nikou AF, Wright EA, Phan JD, Leung KL, Grogan TR, et al. Precocious subcutaneous abdominal stem cell development to adipocytes in normal-weight women with polycystic ovary syndrome. Fertil Steril. 2018;110(7):1367-76. DOI: https://doi.org/10.1016/j.fertnstert.2018.08.042
Dumesic D, Akopians A, Madrigal V, Ramirez E, Margolis D, Sarma MK, et al. Hyperandrogenism Accompanies Increased Intra-Abdominal Fat Storage in Normal Weight Polycystic Ovary Syndrome Women. J Clin Endocrinol Metab. 2016;101:4178-88. DOI: https://doi.org/10.1210/jc.2016-2586
Brennan KM, Kroener LL, Chazenbalk GD, Dumesic DA. Polycystic Ovary Syndrome: Impact of Lipotoxicity on Metabolic and Reproductive Health. Obstet Gynecol Surv. 2019;74(4):223-31. DOI: https://doi.org/10.1097/OGX.0000000000000661
Lin K, Sun X, Wang X, Wang H, Chen X. Circulating Adipokine Levels in Nonobese Women with Polycystic Ovary Syndrome and in Nonobese Control Women: A Systematic Review and Meta-Analysis. Front Endocrinol. 2021;11:537809. DOI: https://doi.org/10.3389/fendo.2020.537809
Cree-Green M, Newcomer BR, Coe G, Newnes L, Baumgartner A, Brown MS, et al. Peripheral insulin resistance in obese girls with hyperandrogenism is related to oxidative phosphorylation and elevated serum free fatty acids. Am J Physiol Endocrinol Metab. 2015;308(9):E726-33. DOI: https://doi.org/10.1152/ajpendo.00619.2014
Diamanti-Kandarakis E. Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications. Expert Rev Mol Med. 2008;10:e3. DOI: https://doi.org/10.1017/S1462399408000598
Behboudi-Gandevani S, Ramezani Tehrani F, Bidhendi Yarandi R, Noroozzadeh M, Hedayati M, Azizi F. The association between polycystic ovary syndrome, obesity, and the serum concentration of adipokines. J Endocrinol Invest. 2017;40(8):859-66. DOI: https://doi.org/10.1007/s40618-017-0650-x.
Benrick A, Chanclón B, Micallef P, Wu Y, Hadi L, Shelton JM, et al. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. Proc Natl Acad Sci U S A. 2017;114(34):E7187-E96. DOI: https://doi.org/10.1073/pnas.1708854114
Obirikorang C, Owiredu WKBA, Adu-Afram S, Acheampong E, Asamoah EA, Antwi-Boasiakoh EK, et al. Assessing the variability and predictability of adipokines (adiponectin, leptin, resistin and their ratios) in non-obese and obese women with anovulatory polycystic ovary syndrome. BMC Res Notes. 2019;12(1):513. DOI: https://doi.org/10.1186/s13104-019-4546-z
Li S, Huang X, Zhong H, Peng Q, Chen S, Xie Y, et al. Low circulating adiponectin levels in women with polycystic ovary syndrome: an updated meta-analysis. Tumour Biol. 2014;35(5):3961-73. DOI: https://doi.org/10.1007/s13277-013-1595-0
Abbasi F, Chu JW, Lamendola C, McLaughlin T, Hayden J, Reaven GM, et al. Discrimination between obesity and insulin resistance in the relationship with adiponectin. Diabetes. 2004;53(3):585-90. DOI: https://doi.org/10.2337/diabetes.53.3.585
Flier JS, Maratos-Flier E. Leptin's Physiologic Role: Does the Emperor of Energy Balance Have No Clothes? Cell Metab. 2017;26(1):24-6. DOI: https://doi.org/10.1016/j.cmet.2017.05.013
Ozgokce C, Elci E, Yildizhan R. C-Reactive Protein, Fibrinogen, Leptin, and Adiponectin Levels in Women with Polycystic Ovary Syndrome. J Obstet Gynaecol India. 2020;70(6):490-6. DOI: https://doi.org/10.1007/s13224-020-01331-7
Zheng SH, Du DF, Li XL. Leptin Levels in Women With Polycystic Ovary Syndrome: A Systematic Review and a Meta-Analysis. Reprod Sci. 2017;24(5):656-70. DOI: https://doi.org/10.1177/1933719116670265
Remsberg KE, Talbott EO, Zborowski JV, Evans RW, McHugh-Pemu K. Evidence for competing effects of body mass, hyperinsulinemia, insulin resistance, and androgens on leptin levels among lean, overweight, and obese women with polycystic ovary syndrome. Fertil Steril. 2002;78(3):479-86. DOI: https://doi.org/10.1016/s0015-0282(02)03303-4
Veldhuis JD, Pincus SM, Garcia-Rudaz MC, Ropelato MG, Escobar ME, Barontini M. Disruption of the synchronous secretion of leptin, LH, and ovarian androgens in nonobese adolescents with the polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86(8):3772-8. DOI: https://doi.org/10.1210/jcem.86.8.7775
Abdalla MMI. Salivary resistin level and its association with insulin resistance in obese individuals. World J Diabetes. 2021;15;12(9):1507-17. DOI: https://doi.org/10.4239/wjd.v12.i9.1507
Seow KM, Juan CC, Wu LY, Hsu YP, Yang WM, Tsai YL, Hwang JL, Ho LT. Serum and adipocyte resistin in polycystic ovary syndrome with insulin resistance. Hum Reprod. 2004;19(1):48-53. DOI: https://doi.org/10.1093/humrep/deh010
Sun Y, Wu Z, Wei L, Liu C, Zhu S, Tang S. High-visfatin levels in women with polycystic ovary syndrome: evidence from a meta-analysis. Gynecol Endocrinol. 2015;31(10):808-14. DOI: 10.3109/09513590.2015.1056140
Moustafa S, Al-Hakeim H. The impact of serum visfatin, and resistin levels on insulin resistance in patients with polycystic ovary syndrome. ZJMS. 30Apr.2020 [acceso: 27/12/2021];24(1):80-8. Disponible en: https://zjms.hmu.edu.krd/index.php/zjms/article/view/713
Abdul-Maksoud RS, Zidan HE, Saleh HS, Amer SA. Visfatin and SREBP-1c mRNA Expressions and Serum Levels Among Egyptian Women with Polycystic Ovary Syndrome. Genet Test Mol Biomarkers. 2020;24(7):409-19. DOI: https://doi.org/https://doi.org/10.1089/gtmb.2019.0192
Olszanecka M, Madej P, Zdun D, Bożentowicz M, Sikora J, Chudek J, et al. Are plasma levels of visfatin and retinol-binding protein 4 (RBP4) associated with body mass, metabolic and hormonal disturbances in women with polycystic ovary syndrome? Eur J Obstet Gynecol Reprod Biol.2012;162:55-61. DOI: https://doi.org/10.1016/j.ejogrb.2012.01.026
Garza-Garza MA, Delgadillo-Guzmán D. Involvement of TNF-alpha in the polycystic ovary syndrome. Ginecol Obstet Mex. 2020 [acceso: 27/12/2021];88(06):385-93. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=93563
Gao L, Gu Y, Yin X. High Serum Tumor Necrosis Factor-Alpha Levels in Women with Polycystic Ovary Syndrome: A Meta-Analysis. PLoS One. 2016;11:e0164021. DOI: https://doi.org/10.1371/journal.pone.0164021
Escobare H, Luquez M, González F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril. 2011;95:1048-58.e1-2. doi: https://doi.org/10.1016/j.fertnstert.2010.11.036
Puder J, Varga S, Nusbaumer C, Zulewski H, Bilz S, Müller B, Keller U. Women with polycystic ovary syndrome are sensitive to the TNF-alpha-lowering effect of glucose-induced hyperinsulinaemia. Eur J Clin Invest. 2006;36:883-9. DOI: https://doi.org/10.1111/j.1365-2362.2006.01734.x.
Cardoso N, Ribeiro V, Dutra S, Ferriani R, Gastaldi A, Araújo J, et al. Polycystic ovary syndrome associated with increased adiposity interferes with serum levels of TNF-alpha and IL-6 differently from leptin and adiponectin. Arch Endocrinol Metab. 2020;64:4-10. DOI: https://doi.org/10.20945/2359-3997000000197
Lim SS, Hutchison SK, Van Ryswyk E, Norman RJ, Teede HJ, Moran LJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2019;3(3):CD007506. DOI: https://doi.org/10.1002/14651858.CD007506.pub4
Jeanes YM, Reeves S. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges. Nutr Res Rev. 2017;30(1):97-105. DOI: https://doi.org/10.1017/S0954422416000287
Stepto NK, Cassar S, Joham AE, Hutchison SK, Harrison CL, Goldstein RF, et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum Reprod. 2013;28(3):777-84. DOI: https://doi.org/10.1093/humrep/des463
Mayer SB, Evans WS, Nestler JE. Polycystic ovary syndrome and insulin: our understanding in the past, present and future. Womens Health (Lond). 2015;11(2):137-49. DOI: https://doi.org/10.2217/whe.14.73
Lim SS, Kakoly NS, Tan JWJ, Fitzgerald G, Bahri Khomami M, Joham AE, et al. Metabolic syndrome in polycystic ovary syndrome: a systematic review, meta-analysis and meta-regression. Obes Rev. 2019;20(2):339-52. DOI: https://doi.org/10.1111/obr.12762
Dumesic DA, Phan JD, Leung KL, Grogan TR, Ding X, Li X, et al. Adipose Insulin Resistance in Normal-Weight Women with Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2019;104(6):2171-83. DOI: https://doi.org/10.1210/jc.2018-02086
Talmor A, Dunphy B. Female obesity and infertility. Best Pract Res Clin Obstet Gynaecol. 2015;29(4):498-506. DOI: https://doi.org/10.1016/j.bpobgyn.2014.10.014
Koivuaho E, Laru J, Ojaniemi M, Puukka K, Kettunen J, Tapanainen J, et al. Age at adiposity rebound in childhood is associated with PCOS diagnosis and obesity in adulthood-longitudinal analysis of BMI data from birth to age 46 in cases of PCOS. Int J Obes. 2019;43:1370-79. DOI: https://doi.org/10.1038/s41366-019-0318-z
Cheng XB, Wen JP, Yang J, Yang Y, Ning G, Li XY. GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine. 2011;39(1):6-12. DOI: https://doi.org/10.1007/s12020-010-9375-8
Brower MA, Hai Y, Jones MR, Guo X, Chen YI, Rotter JI, et al. Bidirectional Mendelian randomization to explore the causal relationships between body mass index and polycystic ovary syndrome. Hum Reprod. 2019;34(1):127-36. DOI: 10.1093/humrep/dey343
Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity's impact. Fertil Steril. 2017;107(4):840-7. DOI: https://doi.org/10.1016/j.fertnstert.2017.01.017.
Gonzalez MB, Lane M, Knight EJ, Robker RL. Inflammatory markers in human follicular fluid correlate with lipid levels and Body Mass Index. J Reprod Immunol. 2018;130:25-9. DOI: https://doi.org/10.1016/j.jri.2018.08.005.
Chabrolle C, Tosca L, Ramé C, Lecomte P, Royère D, Dupont J. Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil Steril. 2009;92(6):1988-96. DOI https://doi.org/10.1016/j.fertnstert.2008.09.008.
Silvestrim RL, Bos-Mikich A, Roos ML, Frantz N. The Effects of Overweight and Obesity on Assisted Reproduction Technology Outcomes. JBRA. 2019;23(3):281-6. DOI: https://doi.org/10.5935/1518-0557.20190005
Wang H, Cheng Q, Li X, Hu F, Han L, Zhang H, et al. Loss of TIGAR Induces Oxidative Stress and Meiotic Defects in Oocytes from Obese Mice. Mol Cell Proteomics. 2018;17(7):1354-64. DOI: https://doi.org/10.1074/mcp.RA118.000620.
Wise LA, Rothman KJ, Mikkelsen EM, Sørensen HT, Riis A, Hatch EE. An internet-based prospective study of body size and time-to-pregnancy. Hum Reprod. 2010;25(1):253-64. DOI: https://doi.org/10.1093/humrep/dep360.
Bahri M, Joham A, Boyle J, Piltonen T, Silagy M, Arora C, et al. Increased maternal pregnancy complications in polycystic ovary syndrome appear to be independent of obesity-A systematic review, meta-analysis, and meta-regression. Obes Rev. 2019;20:659-74. DOI: https://doi.org/10.1111/obr.12829.
Ozegowska K, Korman M, Szmyt A, Pawelczyk L. Heterogeneity of Endocrinologic and Metabolic Parameters in Reproductive Age Polycystic Ovary Syndrome (PCOS) Women Concerning the Severity of Hyperandrogenemia-A New Insight on Syndrome Pathogenesis. Int J Environ Res Public Health. 2020;17:9291. DOI: https://doi.org/10.3390/ijerph17249291
Legro RS. Obesity and PCOS: implications for diagnosis and treatment. Semin Reprod Med. 2012;30(6):496-506. doi: https://doi.org/10.1055/s-0032-1328878.
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019 Mar;92:6-10. DOI: https://doi.org/10.1016/j.metabol.2018.09.005
Carmina E, Napoli N, Longo R, Rini G, Lobo R. Metabolic syndrome in polycystic ovary syndrome (PCOS): lower prevalence in southern Italy than in the USA and the influence of criteria for the diagnosis of PCOS. Eur J Endocrinol. 2006;154:141-5. DOI: https://doi.org/10.1530/eje.1.02058
Monteagudo Peña G, González Suárez R, Gómez Alzugaray M, Ovies Carballo G, Menocal Alayón A, Rodríguez Martínez K, et al. Resistencia a la insulina en mujeres con Síndrome de Ovario Poliquístico. Rev Cub Endocrinol. 2020 [acceso: 27/12/2021];30(2):e179. Disponible en: http://www.revendocrinologia.sld.cu/index.php/endocrinologia/article/view/179
Lizneva D, Kirubakaran R, Mykhalchenko K, Suturina L, Chernukha G, Diamond M, et al. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: systematic review and meta-analysis. Fertil Steril. 2016; 106:1510-20.e2. DOI: https://doi.org/10.1016/j.fertnstert.2016.07.1121
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2022 Gilda Monteagudo Peña, Bertha Rodríguez Pendás, Gisel Ovies Carballo, Manuel Gómez Alzugaray, Aimee Álvarez Álvarez, Maité Cabrera Gamez

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.